P Tetrahedron Letters, Vol. 37, No. 37, pp. 6737-6740, 1996
ergamon Copyright © 1996 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

PII: S0040-4039(96)01455-4 0040-4039/96 $15.00 + 0.00

Cathodic Coupling of Ketones with Trimethylsilyl Substituted Allyl Alcohols!
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Abstract : Cathodic coupling of ketones with 3-(trimethylsilyl)allyl alcohols has
been found to give trimethylsilyl substituted 1,3-diols with high diastereoselectivity,
whereas that with 2-(trimethylsilyl)allyl alcohols afforded homoallylic alcohols
through the Peterson elimination of intermediately formed trimethylsilyl substituted
1,4-diols. Copyright © 1996 Elsevier Science Ltd

It has been shown in our previous studies that cathodic coupling of ketones (1) with olefins is
remarkably affected by the structure of olefin (terminal, exomethylene, or inner type olefin) and some types
of heteroatom substituent. In the reaction of 1 with unsaturated silanes (Scheme 1, R, R2= alkyl groups,
R3=H, R4= H or alkyl group)5, for instance, the coupling reaction was remarkably promoted by stabilization
of the anionic intermediate by the trimethylsilyl group and hence, it took place at the neighboring position of
trimethylsilyl group even though the type of olefin was exomethylene type. On the other hand, in the
reaction of 1 with allyl alcohols (Scheme 2, R1, R2= alkyl groups, R3, R4, RS = H or alkyl group),S the
hydroxyl group located at the allylic position played important roles in the coupling and the reaction took
place at the position ¥ to hydroxyl group with high regio- and stereoselectivities even in the case that the
olefin was inner type.
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In the present study, the coupling of 1 with olefins having both trimethylsilyl and hydroxyl groups in
the same molecule has been examined and it has been found that the regioselectivity of the reaction was
controlled by the trimethylsilyl group, and the hydroxyl group played an important role in the
stereoselectivity. The coupling reaction is useful for the regioselective synthesis of homoallylic alcohols.

In order to examine the effect of trimethylsilyl and hydroxyl groups on the coupling, cathodic reduction
of a solution of acetone (1a) and 3-(trimethylsilylallyl alcohol (2a; R = H, Y = OH) in DMF was carried in
the presence of E4NOTs.? As shown in Scheme 3, the coupling of 1a with 2a took place at the position-2 of
2a (position P to both trimethylsilyl and hydroxyl groups) with indicating that the regioselectivity was
controlled not by the hydroxy group but by the trimethylsilyl group. Under similar conditions, the reaction of
1a with 1-methyl-3-(trimethylsilyl)allyl alcohol (2b; R = Me, Y = OH) also took place at position-2 and
afforded the product 3b (R= Me, Y = OH) with high regio- and stereoselectivities8 even though the type of
olefin was the inner type, whereas the coupling of 1a with 1-trimethylsilyl-1-butene (2¢; R = Me, Y = H) did
not take place at all as it was predicted. These results clearly show that the hydroxyl group also promotes the
coupling of 1a with 2b and determines the stereoselectivity of the product 3b.9
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The coupling of ketones 1 with 1-propyl-2-(trimethylsilylallyl alcohol (4a; R3 =R5=H, R =n-Pr) has
been found to lead to an unprecedented type reaction that is useful for the regioselective synthesis of
homoallylic alcohols. As shown in Scheme 4, coupling of 1 with 4a did give not a trimethylsilyl substituted
1,4-diol (10; R3= RS = H, R = n-Pr) but a homoallylic alcohol (5a; R3= R3=H, R%=n-Pr). The formation of
Sa may be explained by the mechanism shown in Scheme 4. Namely, the Peterson elimination of the
trimethylsilyl and hydroxy! groups from the final intermediate dianion 9 affords the product 5a.1L.12
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As typical results are summarized in Table 1, the cathodic coupling of 1 with 2-(trimethylsilyl)allyl
alcohols (4a-de) afforded the corresponding homoallylic alcohols in good yield (Run 1-7).13 The presence of
an alkyl group (R3) on the double bond, namely the inner type olefin, was found to decrease the yield. The
coupling of 1a with 4f, for instsnce, gave Sh with 35 % yield (Run 8). Since the base induced Peterson
elimination has been known to require a syn conformation,? the trans-cis ratio of the products shown in
Table | may reflect the stereoselectivity of the protonation step of 8. This reaction seems to be useful since
the coupling of 1 and 4 provides a new route for the regioselective transformation of 1 to homoallylic

alcohols 5.
Table 1. Cathodic Coupling of Ketones with Vinylsilanes 2.

Ketone 1 Vinylsilane 4 Product 5°

Run R! R? R® R* R Yields (%) trans / cis®
1 Me Me la 4a H nPr H 5a 70 4.7

2 -(CHy,- 1b 4a 5b 67 4.0

3 la 4 H isoPr H S5¢ 87 4.0

4 Me Et lc 4 5d 74 55

5 1a 4 H ?’O H Se 88 4.6

6 1a 4d H Et Et St 96

7 1a de H -(CHys- 5¢ 79

8 1a 4f Mc nPr H 5h 35 6.9

a) Isolated yield. d) Determined by IR and 'H NMR.
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In order to estimate the extent of promotion effect of trimethylsilyl and hydroxyl groups in the cathodic
coupling, the electroreduction of a solution of 1a (5 mmol) and 4a (2 mmol) was carried out in the presence
of 1-hexene (11) (2 mmol) (Scheme 5, eq. 1), 1-hexene-3-ol (13) (2 mmol) (eq. 2), or 2-trimethylsilyl-1-
hexene (15) (2 mmol) (eq. 3). The results shown in Scheme 5 (eq. 1 or eq. 2) indicate that the reactivity of
double bond is highly enhanced and also mainly determined by the trimethylsilyl group since the reaction
exclusively took place with 4a and yielded 5a rather than 12 (eq. 1) or 14 (eq. 2). The effect of the hydroxyl
group at allylic position seems much less than the trimethylsilyl group since the reaction of the mixture of 1a,
4a, and 2-trimethylsilyl-1-hexene (15) gave the products 5a (58%) and 16 (42%) in comparable yields
(Scheme 5, eq. 3). Although the promotion effect of the hydroxyl group is not obviously seen in the reactions
shown in egs. 1, 2, and 3, its remarkable effect was clearly shown in the competitive reaction of 1a with 11
and 13 (Scheme 5, eq. 4), in which 14 was formed as the main product (83%).
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8) We have recently reported that the interaction between a hydroxyl group located at the allylic position
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9) The stereochemistry of 3b was determined as follows: The reaction of 3b with Me3SiCly / EN gave
the cyclic siloxane 17 [1H NMR (CDCls) 3 0.03 (s, 9H), 0.13 (s, 3H), 0.15 (s, 3H), 0.18 (dd, J = 16.3,
3.8 Hz, 1H), 0.36 (dd, J = 16.3, 3.8 Hz, 1H), 1.17 (s, 3H), 1.19 (d, J = 6.0 Hz, 3H), 1.27 (s, 3H), 1.55-
1.70 (m, Ha), 3.89 (qd, J = 6.2, 9.7 Hz, Hp) The stereochemical relation between HA and Hp was
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Sa: IR (neat) 3350, 975 cm-1; IH NMR (CDCh) 8 0.90 (t, J = 7.4 Hz, 3H), 1.20 (trans isomer), 1.23
(cis isomer) (s, 6H), 1.30-1.50 (m, 2H), 1.54 (OH), 1.96-2.10 (m, 2H), 2.15-2.18 (trans isomer), 2.22-
2.28 (cis isomer) (m, 2H), 5.45-5.56 (m, 2H); Anal. Calcd for CgH;g0: C, 76.00; H, 12.76. Found: C,
75.79; H, 13.04.
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Anal. Calcd for CoHj80: C, 76.00; H, 12.76. Found: C, 75.60; H, 13.03.
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6H), 0.99 (d, J = 6.7 Hz, 6H), 1.13 (zrans isomer), 1.16 (cis isomer) (s, 3H),1.40-1.55 (m, 2H), 1.65
(OH), 2.14 (trans isomer), 2.22 (cis isomer) (d, J = 5.9 Hz, 2H), 2.20-2.40 (m, 1H), 5.30-5.60 (m, 2H).
Se: IR (neat) 3350, 3025, 980, 910 cm!; IH NMR (CDCl3) & 1.20 (trans isomer), 1.24 (cis isomer) (s,
6H), 1.30-1.50 (m, 1H), 1.57 (OH), 1.70-1.95 (m, 2H), 2.00-2.10 (m, 3H), 2.15-2.30 (m, 3H), 5.45-5.55
(m, 2H), 5.66-5.70 (m, 2H).

5f: IR (neat) 3350, 910 cm-}; IH NMR (CDCl3) 8 0.96 (t, J = 7.6 Hz, 3H), 1.02 (t, J = 7.4 Hz, 3H), 1.22
(s, 6H), 1.70 (OH), 2.00-2.15 (m, 4H), 2.21 (d, J = 7.7 Hz, 2H), 5.19 (t, J = 7.7 Hz, 1H); Anal. Calcd for
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2.22 (m, 6H), 5.15-5.25 (m, 1H); Anal. Calcd for C11H2¢0: C, 78.51; H, 11.98. Found: C, 78.31; H,
12.18.

5h: IR (neat) 3400, 2970, 2880, 1460, 1380, 1140, 970 cm!; I'H NMR (CDCl3) 8 0.89 (t, J = 7.3 Hz,
3H), 1.01 (d, J = 6.9 Hz, 3H), 1.13 (trans isomer), 1.15 (cis isomer) (s, 3H), 1.18 (frans isomer), 1.19
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